

LID 7160 (Loctite[®] 2400TM Reformulation) October 2019

PRODUCT DESCRIPTION

Technology	Acrylic		
Chemical	Dimethacrylate ester		
Туре			
Appearance	Blue liquid ^{LMS}		
(uncured)			
Fluorescence	Positive under UV light ^{LMS}		
Components	One component-requires no		
	mixing		
Viscosity	Medium, thixotropic		
Cure	Anerobic		
Secondary	Activator		
Cure			
Application	Threadlocking		
Strength	Medium		

LID 7160 (LOCTITE® 2400TM) is designed for the locking and sealing of threaded fasteners which require normal disassembly with standard hand tools. The product cures when confined in the absence of air between close fitting metal surfaces and prevents loosening and leakage from shock and vibration. Particularly suitable for applications on less active substrates such as stainless steel and plated surfaces, where disassembly with hand tools is required for servicing. The thixotropic nature of LID 7160 (LOCTITE® 2400TM) reduces the migration of liquid product after application to the substrate.

TYPICAL PROPERTIES OF UNCURED MATERIAL

Specific Gravity @ 25 °C 1.1 Flash Point - See SDS Viscosity, Cone & Plate, 25 °C, mPa·s (cP): Shear rate 129 s⁻¹ 225 to 475^{LMS}

TYPICAL CURING PERFORMANCE

Cure Speeds Vs. Substrate

The rate of cure will depend on the substrate used. The graph below shows the breakaway strength developed with time on M10 steel nuts and bolts compared to different materials and tested according to ISO 10964.

Cure Speed Vs. Bond Gap

Cure Speed vs. Bond Gap The rate of cure will depend on the bondline gap. Gaps in threaded fasteners depends on thread type, quality and size. The following graph shows shear strength developed with time on steel pins and collars at different controlled gaps and tested according to ISO 10123.

Cure Speed Vs. Temperature

Cure Speed vs. Temperature The rate of cure will depend on the temperature. The graph below shows the breakaway strength developed with time at different temperatures on M10 steel nuts and bolts, M10 Geomet 500A nuts and bolts, stainless steel nuts and bolts and tested according to ISO 10964

Geomet 500A:

Stainless Steel

Cure Speed vs. Activator

Where cure speed is unacceptably long, or large gaps are present, applying activator to the surface will improve cure speed. The graph below shows the breakaway strength developed with time on M10 stainless steel nuts and bolts using Activator 7471TM and 7649TM and tested according to ISO 10964.

TYPICAL PERFORMANCE OF CURED MATERIAL

Adhesive Properties

Cured for 24 hours @ 22 °C Breakaway Torque, ISO 10964: M10 steel nuts and black oxide steel bolts (unseated): 25 N.m (221 lb.in.)

Prevail Torque, ISO 10964: M10 steel nuts and black oxide steel bolts (unseated) 3 N.m (27 lb.in.)

Breakloose Torque, ISO 10964, Pre-torqued to 5 N·m: M10 steel nuts and Black oxide steel bolts (seated): 25 N.m (221 lb.in.)

Compressive Shear Strength, ISO 10123: Steel pins and collars N/mm² \geq 5 ^{LMS} (psi) (\geq 725)

TYPICAL ENVIRONMENTAL RESISTANCE Cured for 1 week @ 22 °C

Breakloose Torque, ISO 10964, Pre-torqued to 5 N \cdot m: M10 zinc phosphate steel nuts and bolts

Cured for 1 week @ 22 °C Breakloose Torque, ISO 10964, Pre-torqued to 5 N·m: M10 Geomet 500A coated steel nuts and bolts

Heat Aging

Aged at temperature indicated and tested @ 22°C

Geomet 500A

Zinc Phosphate

Chemical/Solvent Resistance

Aged under conditions indicated and tested @ 22°C.

Geomet 500A

		% of initial strength		
Environment	°C	100 h	500 h	1000 h
Motor Oil	120	110	110	120
Antifreeze	87	120	110	110
Unleaded Petrol	22	100	100	100
Diesel	22	110	110	110
Brake Fluid	22	100	110	110
Acetone	22	90	90	90
Ethanol	22	100	100	90
Humid Air (98 % RH)	40	110	100	100

Zinc Phosphate

		% of initial strength		
Environment	°C	100 h	500 h	1000 h
Motor Oil	120	120	110	110
Antifreeze	87	110	110	110
Unleaded Petrol	22	100	100	110
Diesel	22	110	110	120
Brake Fluid	22	110	110	120
Acetone	22	100	90	90
Ethanol	22	100	100	100

GENERAL INFORMATION

Hot Strength Tested at temperature This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Safety Data Sheet (SDS).

Where aqueous washing systems are used to clean the surfaces before bonding, it is important to check for compatibility of the washing solution with the adhesive. In some cases, these aqueous washes can affect the cure and performance of the adhesive.

This product is not normally recommended for use on plastics (particularly thermoplastic materials where stress cracking of the plastic could result). Users are recommended to confirm compatibility of the product with such substrates.

Directions for use: For Assembly

For Assembly

1. For best results, clean all surfaces (external and internal) with a LOCTITE® cleaning solvent and allow to dry.

2. If the material is an inactive metal or the cure speed is too slow, spray all threads with Activator 7471TM or 7649TM and allow to dry.

3. Shake the product thoroughly before use.

4. To prevent the product from clogging in the nozzle, do not allow the tip to touch metal surfaces during application.

5. For Thru Holes, apply several drops of the product onto the bolt at the nut engagement area.

6. For Blind Holes, apply several drops of the product down the internal threads to the bottom of the hole. 7. For Sealing Applications, apply a 360° bead of product to the leading threads of the male fitting, leaving the first thread free. For bigger threads and voids, adjust product amount accordingly.

8. Assemble and tighten as required.

For Disassembly

1. Remove with standard hand tools.

2. In rare instances where hand tools do not work because of excessive engagement length, apply localized heat to nut or bolt to approximately 250 °C. Disassemble while hot. Cured product can be removed with a combination of soaking in a Loctite solvent and mechanical abrasion such as a wire brush

Loctite Material Specification^{LMS}

LMS dated August-18, 2019. Test reports for each batch are available for the indicated properties. LMS test reports include selected QC test parameters considered appropriate to specifications for customer use. Additionally, comprehensive controls are in place to assure product quality and consistency. Special customer specification requirements may be coordinated through Henkel Quality.

Storage

Store product in the unopened container in a dry location. Storage information may be indicated on the product container labeling. **Optimal Storage: 8** °C to 21 °C. Storage below 8 °C or greater than 28 °C can adversely affect product properties. Material removed from containers may be contaminated during use. Do not return product to the original container. Henkel Corporation cannot assume responsibility for product which has been contaminated or stored under conditions other than those previously indicated. If additional information is required, please contact your local Technical Service Center or Customer Service Representative.